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Abstract

A quality perspective in data resource management is critical. Because users have different criteria for
determining the quality of data, we propose tagging data at the cell level with quality indicators, which are objective
characteristics of the data and its manufacturing process. Based on these indicators, the user may assess the data’s
quality for the intended application. This paper investigates how such quality indicators may be specified, stored,
retrieved, and processed. We propose an attribute-based data model, query algebra, and integrity rules that facilitate
cell-level tagging as well as the processing of application data that is augmented with quality indicators. An
ER-based data quality requirements analysis methodology is proposed for specification of the kinds of quality
indicator to be modeled.
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1. Introduction In general, inaccurate, out-of-date, or incom-
plete data can have significant impacts both so-
Organizations in industries such as banking, cially and economically [16,17,29]. Managing data
insurance, retail, consumer marketing, and health quality, however, is a complex task. Although it
care are increasingly integrating their business would be ideal to achieve zero defect data, this
processes across functional, product, and geo- may not always be necessary or attainable for,
graphic lines. The integration of these business among others, the following two reasons.
processes, in turn, accelerates demand for more First, in many applications, it may not always
effective application systems for product develop- be necessary to attain zero defect data. In the
ment, product delivery, and customer service [25]. U.S., postal mail may be delivered correctly, even
As a result, many applications require access to if the city-name is incorrect, as long as the zip
corporate functional and product databases. Un- code is correct. Similarly, data users who are
fortunately, errors in databases have been mea- familiar with the data can often detect or work
sured in the ten percent range and higher for a around errors.
variety of applications [12,16,22,24]. Second, there is a cost-quality tradeoff in im-

plementing data quality programs. Ballou and
Pazer found that “in an overwhelming majority of
* Corresponding author. cases, the best solutions in terms of error rate
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reduction is the worst in terms of cost” [2]. The
Pareto Principle suggests that losses are never
uniformly distributed over the quality characteris-
tics. Rather, losses are typically concentrated in a
small percentage of the quality factors [13]. In
sum, when the cost is prohibitively high, it is not
economically feasible to attain zero-defect data.

Given that zero defect data may sometimes be
neither necessary nor attainable, it would be use-
ful to be able to judge the quality of data without
having to do a full data inspection or regenerat-
ing the data anew. This suggests that we tag data
with quality indicators which are characteristics
of the data and its manufacturing process. From
these quality indicators, the user can make a
judgment of the quality of the data for the spe-
cific application at hand. In making a financial
decision to purchase stocks, for example, it would
be useful to know the quality of data through
quality indicators such as the source of the data,
when the data was collected, and how the data
was collected.

In this paper, we propose an attribute-based
model that facilitates the cell-level tagging of
data. From these quality indicators, the user can
make a better interpretation of the data and de-
termine the believability of the data.

Included in this attribute-based model are an
extension of the relational model, a set of quality
integrity rules, and a quality indicator algebra
which defines a relational processing of applica-
tion data augmented with quality indicators. In
order to determine what kinds of quality indica-

nterpretable

tors are to be tagged to the data, an E-R based
data quality requirements analysis methodology is
also presented.

1.1. Dimensions of data quality

Just as it is difficult to manage product quality
without understanding the attributes of the prod-
uct which define its quality, it is also difficult to
manage data quality without understanding the
characteristics that define data quality. There-
fore, before one can address issues involved in
data quality, one must define what data quality
means. In the following subsection, we present a
definition for the dimensions of data quality.

Accuracy is the most obvious dimension when
it comes to data quality. Morey suggested that
“errors occur because of delays in processing
times, lengthy correction times, and overly or
insufficiently stringent data edits” [22]. In addi-
tion to defining accuracy as “the recorded value
is in conformity with the actual value,” Ballou
and Pazer defined timeliness (the recorded value
is not out of date), completeness (all values for a
certain variables are recorded), and consistency
(the representation of the data value is the same
in all cases) as the key dimensions of data quality
[2]. Huh et al. identified accuracy, completeness,
consistency, and currency as the most important
dimensions of data quality [11].

It is interesting to note that although methods
for quality control have been well established in
the manufacturing field e.g.[13], neither the di-

believable

Consistent

(source Is)
redible

Fig. 1. A hierarchy of data quality dimensions.
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mensions of quality for manufacturing nor for
data have been rigorously defined [1,8,9,10,11,13,
22,31]. This may be due, in part, to the hetero-
geneity in general product characteristics.

Various data, however, even from disparate
application domains, have common dimensions
upon which its quality can be measured. Data
quality is both a multi-dimensional and a hierar-
chical concept. Figure 1 depicts one possible rep-
resentation of the dimensions of data quality,
motivated by the following discussion.

First the user must be able to get to the data,
which means that the data must be accessible (the
user has the means and privilege to get the data).
Second, the user must be able to interpret the
data (the user understands the syntax and seman-
tics of the data). Third, the data must be useful
(data can be used as an input to the user’s deci-
sion making process). Finally, the data must be
believable to the user (to the extent that the user
can use the data as a decision input). Resulting
from this list are the following four dimensions:
accessibility, interpretability, usefulness, and be-
lievability. In order to be accessible to the user,
the data must be available (exists in some form
that can be accessed); to be useful, the data must
be relevant (fits requirements for making the
decision) and timely; and to be believable, the
user may consider, among other factors, that the
data be complete, consistent, credible, and accu-
rate. Timeliness, in turn, can be characterized by
currency (when the data item was stored in the
database) and volatility (how long the item re-
mains valid).

These multi-dimensional concepts and hierar-
chy of data quality dimensions provide a concep-
tual framework for understanding the character-
istics that define data quality. In this paper, we
focus on interpretability and believability, as we
consider accessibility to be primarily a function of
the information system and usefulness to be pri-

Table 1

Company information

Company name CEO name Earnings estimate
IBM Akers 7

DELL Dell 3

Table 2
Company information with quality indicators

Company CEO
name name

IBM Akers 7
(source: Barron’s, reporting-date:
10-05-92, data-entry-operator: Joe)
DELL Dell 3
{source: WSJ, reporting-date:
10-06-92, data-entry-operator: Mary)

Earnings estimate

marily a function of an interaction between the
data and the application domain. The idea of
data tagging is illustrated more concretely below.

1.2. Data quality: an attribute-based example

Suppose an analyst maintains a database on
technology companies. The schema used to sup-
port this effort may contain attributes such as
company name, CEO name, and earnings esti-
mate (Table 1). Data may be collected over a
period of time and come from a variety of sources.

As part of determining the believability of the
data (assuming high interpretability), the analyst
may want to know when the data was generated,
where it came from, how it was originally ob-
tained, and by what means it was recorded into
the database. From Table 1, the analyst would
have no means of obtaining this information. We
illustrate in Table 2 an approach in which the
data is tagged with quality indicators which may
help the analyst determine the believability of the
data.

As shown in Table 2, “7, {source: Barron’s,
reporting-date: 10-05-92, data-entry-operator:
Joe)” in Column 3 indicates that “7 was the
Earnings Estimate of IBM” was reported in Bar-
ron’s on October 5, 1992 and was entered by Joe.
An experienced analyst would know that Barron’s
is a credible source; that October 5, 1992 is timely
(for example); and that Joe is experienced, there-
fore the data is likely to be accurate. As a result,
he may conclude that the earnings estimate is
believable. This example both illustrates the need
for, and provides an example approach for, incor-
porating quality indicators into the database
through data tagging.
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1.3. Research focus and paper organization

The goal of the attribute-based approach is to
facilitate the collection, storage, retrieval, and
processing of data that has quality indicators.
Central to the approach is the notion that a data
attribute value may have a set of quality indica-
tors associated with it. In some applications it
may be necessary to know the quality of the
quality indicators themselves. Thus, the model is
constructed so that a quality indicator may, in
turn, have another set of associated quality indi-
cators. As such, an attribute may have an arbi-
trary number of underlying levels of quality indi-
cators. This constitutes a tree structure, as shown
in Figure 2.

Conventional spreadsheet programs and
database systems are not appropriate for han-
dling data which is structured in this manner. In
particular, they lack needed quality integrity con-
straints necessary for ensuring that quality indica-
tors are always tagged along with the data (and
deleted when the data is deleted) and the alge-
braic operators necessary for attribute-based
query processing. In order to associate an at-
tribute with its immediate quality indicators, a
mechanism must be developed to facilitate the
linkage between the two, as well as between a
quality indicator and the set of quality indicators
associated with it.

This paper is organized as follows. Section 2
presents the research background. Section 3 pre-
sents the data quality requirements analysis
methodology. In section 4, we present the at-
tribute-based data model. Discussion and future
directions are made in Section 5.

indicator indicator

indicator

Fig. 2. An attribute with quality indicators.

indicator

2. Research background

In this section we discuss our rationale for
tagging data at the cell level, summarize the
literature related to data tagging, and present the
terminology used in this paper.

2.1. Rationale for cell-level tagging

Any characteristics of data at the relation level
should be applicable to all instances of the rela-
tion. It is, however, not reasonable to assume that
all instances (i.e., tuples) of a relation have the
same quality. Therefore, tagging quality indica-
tors at the relation level is not sufficient to han-
dle quality heterogeneity at the instance level.

By the same token, any characteristics of data
tagged at the tuple level should be applicable to
all attribute values in the tuple. However, each
attribute value in a tuple may be collected from
different sources, through different collection
methods, and updated at different points in time.
Therefore, tagging data at the tuple level is also
insufficient. Since the attribute value of a cell is
the basic unit of manipulation, it is necessary to
tag quality information at the cell level.

We now examine the literature related to data

tagging.
2.2. Work related to data tagging

A mechanism for tagging data has been pro-
posed by Codd. It includes NOTE, TAG, and
DENOTE operations to tag and un-tag the name
of a relation to each tuple. The purpose of these
operators is to permit both the schema informa-
tion and the database extension to be manipu-
lated in a uniform way [5]. It does not, however,
allow for the tagging of other data (such as source)
at either the tuple or cell level.

Although self-describing data files and meta-
data management have been proposed at the
schema level [19,20,21], no specific solution has
been offered to manipulate such quality informa-
tion at the tuple and cell levels.

A rule-based representation language based
on a relational schema has been proposed to
store data semantics at the instance level [27].
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These rules are used to derive meta-attribute
values based on values of other attributes in the
tuple. However, these rules are specified at the
tuple level as opposed to the cell level, and thus
cell-level operations are not inherent in the
model.

A polygen model (poly = multiple, gen =
source) [30] has been proposed to tag multiple
data sources at the cell level in a heterogeneous
database environment where it is important to
know not only the originating data source but
also the intermediate data sources which con-
tribute to final query results. The research, how-
ever, was tailored to the “where from” perspec-

tive and did not provide mechanisms to deal with
more general quality indicators.

In [26], annotations are used to support the
temporal dimension of data in an object-oriented
environment. However, data quality is a multi-di-
mensional concept. Therefore, a more general
treatment is necessary to address the data quality
issue. More importantly, no algebra or calculus-
based language is provided to support the manip-
ulation of annotations associated with the data.

The examination of the above research efforts
suggests that in order to support the functionality
of our attribute-based model, an extension of
existing data models is required.

4 - application requirements )
Step 1
determine the application view of data
» application view
application’s Step 2

quality requirments ~,

determine (subjective) quality parameters for the

application
candidate quality / PP
paramaters ‘
« parameter view
Step3
determine (objective) quality indicators for the
application .
- quality view (1) « quality view (i) « quality view (n)
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quality view integration
- quality schema
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Fig. 3. The process of data quality requirements analysis.
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Fig. 4. Application view (output from Step 1).

2.3. Terminology

To facilitate further discussion, we introduce
the following terms:

e An application attribute refers to an attribute
associated with an entity or a relationship in an
entity-relationship (ER) diagram. This would
include the data traditionally associated with
an application such as part number and sup-
plier.

e A quality parameter is a qualitative or subjec-
tive dimension of data quality that a user of
data defines when evaluating data quality. For
example, believability and timeliness are such
dimensions.

e As introduced in Section 1, quality indicators
provide objective information about the charac-
teristics of data and its manufacturing process .
Data source, creation time, and collection
method are examples of such objective mea-
sures.

e A quality parameter value is the value deter-
mined (directly or indirectly) by the user of
data for a particular quality parameter. This
value is based on the values of underlying qual-
ity indicators. Functions can be defined by users
to map quality indicators to quality parameters.
For example, the quality parameter credibility

! We consider an indicator objective if it is generated using a
well defined and widely accepted measure.

may be defined as high or low depending on

the quality indicator source of the data.

e A quality indicator value is a measured charac-
teristic of the stored data. For example, the
data quality indicator source may have a quality
indicator value The Wall Street Journal.

We have discussed the rationale for cell-level
tagging, summarized work related to data tagging,
and introduced the terminology used in this pa-
per. In the next section, we present a methodol-
ogy for the specification of data quality parame-
ters and indicators. The objective of the method-
ology is to allow users to think through their data
quality requirements, and to determine which
quality indicators would be appropriate for the
given application.

3. Data quality requirements analysis

In general, different users may have different
data quality requirements, and different types of
data may have different quality characteristics.
The reader is referred to the appendix for a more
thorough treatment of these issues.

Data quality requirements analysis is an effort
similar in spirit to traditional data requirements
analysis [3,23,28], but focusing on quality aspects
of the data. Based on this similarity, parallels can
be drawn between traditional data requirements
analysis and data quality requirements analysis.
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Figure 3 depicts the steps involved in performing
the proposed data quality requirements analysis.

The input, output and objective of each step
are described in the following subsections.

3.1. Step 1: Establishing the applications view

Step 1 is the whole of the traditional data
modeling process and will not be elaborated upon
in this paper. A comprehensive treatment of the
subject has been presented elsewhere [3,23,28].

For illustrative purposes, suppose that we are
interested in designing a portfolio management
system which contains companies that issue
stocks. A company has a company name, a CEQ,
and an earnings estimate, while a stock has a
share price, a stock exchange (NYSE, AMS, or
OTCQO), and a ticker symbol. An ER diagram that
documents the application view for our running
example is shown in Figure 4.

3.2. Step 2: Determine (subjective) quality parame-
ters

The goal in this step is to elicit quality parame-
ters from the user given an application view.
These parameters need to be gathered from the
user in a systematic way as data quality is a
multi-dimensional concept, and may be opera-
tionalized for tagging purposes in different ways.
Figure 5 illustrates the addition of the two high

level parameters, interpretability and believability,
to the application view. Each quality parameter
identified is shown inside a “cloud” in the dia-
gram.

Interpretability can be defined through quality
indicators such as data units (e.g., in dollars) and
scale (e.g., in millions). Believability can be de-
fined in terms of lower-level quality parameters
such as timeliness, (data source) credibility, and
accuracy. Timeliness, in turn, can be defined
through currency and volatility. The quality pa-
rameters identified in this step are added to the
application view. The resulting view is referred to
as the parameter view. We focus here on the
stock entity shown in Figure 6.

3.3. Step 3: Determine (objective) quality indicators

The goal in Step 3 is to operationalize the
primarily subjective quality parameters identified
in Step 2 into objective quality indicators. Each
quality indicator is depicted as a tag (using a
dotted-rectangle) and is attached to the corre-
sponding quality parameter (from Step 2), creat-
ing the quality view. The portion of the quality
view for the stock entity in the running example is
shown in Figure 7.

Corresponding to the quality parameter inter-
pretable are the more objective quality indicators
(monetary) units in which share price is measured
(e.g., $ vs. ¥), and status which says whether the

COMPANY NAME
@ Believable

EARNINGS ESTIMATE
Believable

[y <G>

STOCK I
SHARE PRICE

o>
Believable

Fig. 5. Interpretability and believability added to the application view.
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Curoney >

Fig. 6. Parameter view for the stock entity (partial output from Step 2).

share price is the latest closing price or latest
nominal price. Similarly, the believability of the
share price is indicated by the quality indicators
(data) source and reporting date.

If it is important to have quality indicators for
a quality indicator, then Steps 2-3 are repeated,
making this an iterative process. For example, the
quality of the attribute Earnings Estimate may
depend not only on the first level source (the
name of the journal) but also on the second level
source (the name of the financial analyst who

provided the Earnings Estimate figure to the
journal and the Reporting date). This scenario is
depicted below in Figure 8.

All quality views are integrated in Step 4 to
generate the quality schema, as discussed in the
following subsection.

3.4. Step 4. Creating the quality schema

When the design is large and more than one
set of application requirements is involved, multi-

(

I UNITS A
_ —| sTOCK ' STATUS !
_O_ Interpretable » . 0 STATUS:
SHARE PRICE
Believable
i
-1 SOURCE
TICKER SYMBOL
e
REPORTING DATE'

J

Fig. 7. The portion of the quality view for t

he stock entity (output from Step 3).
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Fig. 8. Quality indicators of quality indicators.

ple quality views may result. To eliminate redun-
dancy and inconsistency, these quality views must
be consolidated into a single global view, in a
process similar to schema integration [3], so that
a variety of data quality requirements can be met.
The resulting single global view is called the
quality schema.

This involves the integration of quality indica-
tors. In simpler cases, a union of these indicators
may suffice. In more complicated cases, it may be
necessary to examine the relationships among the
indicators in order to decide what indicators to
include in the quality schema. For example, it is
likely that one quality view may have age as an
indicator, whereas another quality view may have
creation time for the same quality parameter. In
this case, creation time may be chosen for the
quality schema because age can be computed
given current time and creation time.

We have presented a step-by-step procedure
to specify data quality requirements. We are now
in a position to present the attribute-based data
model for supporting the storage, retrieval, and
processing of quality indicators as specified in the
quality schema.

4. The attribute-based model of data quality

We choose to extend the relational model be-
cause the structure and semantics of the rela-

tional approach are widely understood. Following
the relational model [6], the presentation of the
attribute-based data model is divided into three
parts: (a) data structure, (b) data integrity, and (c)
data manipulation. We assume that the reader is
familiar with the relational model [4,5,7,18].

4.1. Data structure

As shown in Figure 2 (Section 1), an attribute
may have an arbitrary number of underlying lev-
els of quality indicators. In order to associate an
attribute with its immediate quality indicators, a
mechanism must be developed to facilitate the
linkage between the two, as well as between a
quality indicator and the set of quality indicators
associated with it. This mechanism is developed
through the quality key concept. In extending the
relational model, Codd made clear the need to
uniquely identify tuples through a system-wide
unique identifier, called the tuple ID [5,14]. This
concept is used here to enable this linkage.
Specifically, an attribute in a relation scheme is
expanded into an ordered pair, called a quality
attribute, consisting of the attribute and a quality
key. The quality key is a reference to the underly-
ing quality indicator(s).

For example, the attribute Earnings Estimate
(EE) in Table 3 (Tables 3-6 are embedded in
Figure 9) is expanded into {EE, EE¢) in Table 4
where EEg¢ is the quality key for the attribute EE.
This expanded scheme is referred to as a quality
scheme. In Table 4, ((CN, nil¢), {CEO, nile),
(EE, EEg¢)) defines a quality scheme for the
quality relation Company. The “nil¢” indicates
that no quality indicators are associated with the
attributes CN and CEQ; whereas EE¢ indicates
that EE has associated quality indicators.

Correspondingly, each cell in a relational tuple
is expanded into an ordered pair, called a quality
cell, consisting of an attribute value and a quality
key value. This expanded tuple is referred to as a
quality tuple and the resulting relation (Table 4) is
referred to as a quality relation. Each quality key
value in a quality cell refers to the set of quality
indicator values immediately associated with the
attribute value. This set of quality indicator val-
ues is grouped together to form a kind of quality
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(~ Under the relational model
Table 3: Relation for Company

tia | Company CEO Name | Earnings
Name (CN) (CEO) Estimate (EE)

id001¢ IBM Akers 7

id0p2¢| ~ DELL ~ Dell 3

Under the attribute-based modew

-
I

Relation fo

|
Table 4: Qual'!
tid {CN, nil¢)

|
mpany }g
(CEO, nil¢)| (EE, EE¢)

id001¢
id002¢

(IBM, nil¢)
(Dell, nile)

{Akers, nil¢)|

(Dell, nil¢)

(7,id101¢)
* (3,id102¢)

Table 5: Level-One QIR for the EE attribute

EE¢ {(SRC1, SRC1¢) {News Date, nil¢} (Entry Clerk, nil¢
id101¢] (Barron's,id201¢) | (Oct5'92, nil¢) | JJoe, nil¢)
»| id1024] [XWall St Jnl, id202¢)} (Oct 6'92, nil¢) | (Mary, nil¢)
I_ .

Tables 6: Level-Two QIR for the EE attribute

|
|
|
-

SRC1¢| (SRC2, nil¢) KReport date, nilg)
id201¢| (Zacks, nil¢) [(Sep 1'92, nil¢)
id202¢ | (Zacks, nil¢) Sep 15 '92, nil¢)

Fig. 9. The quality scheme set for company.

tuple called a quality indicator tuple. A quality
relation composed of a set of these time-varying
quality indicator tuples is called a quality indica-

tor relation (QIR). The quality scheme that de-
fines the quality indicator relation is referred to
as the quality indicator scheme.

( \
Quality Scheme Quality Scheme
Iialqkﬂ hild 'l <a1qkﬂ tee Ealqg' . ‘[ <a1qk$|
Qllality . L . . . .
Scheme <_Qua11ty
Set Quality Indicator Schem Quality Indicator Scheme Schema
l<alqkﬁ il ‘I <atqk>] I<alqkﬂ o — ] <a1qk>|

Fig. 10. Quality schemes, quality indicator schemes, quality scheme sets, and the quality schema.



RY. Wang et al. / Decision Support Systems 13 (1995) 349-372 359

The quality key thus serves as a foreign key,
relating an attribute (or quality indicator) value
to its associated quality indicator tuple. For ex-
ample, Table 5 is a quality indicator relation for
the attribute Earnings Estimate and Table 6 is a
quality indicator relation for the attribute SRC1
(source of data) in Table 5. The quality cell (Wall
St Jnl, id202¢) in Table 5 contains a quality key
value, id202¢, which is a tuple id (primary key) in
Table 6.

Let gr, be a quality relation and a an attribute
in gr;. If a has associated quality indicators, then
its quality key must be non-null (i.e., not “nile¢”).
Let gr, be the quality indicator relation contain-
ing a quality indicator tuple for a, then all the
attributes of gr, are called level-one quality indi-
cators for a. Each attribute in gr,, in turn, can
have a quality indicator relation associated with
it. In general, an attribute can have n-levels of
quality indicator relations associated with it, n >
0. For example, Tables 5-6 are referred to re-
spectively as level-one and level-two quality indi-
cator relations for the attribute Earnings Esti-
mate.

We define a quality scheme set as the collec-
tion of a quality scheme and all the quality indi-
cator schemes that are associated with it. In Fig-
ure 9, Tables 3-6 collectively define the quality
scheme set for Company. We define a quality
database as a database that stores not only data
but also quality indicators. A quality schema is
defined as a set of quality scheme sets that de-
scribes the structure of a quality database. Figure
10 illustrates the relationship among quality
schemes, quality indicator schemes, quality
scheme sets, and the quality schema.

We now present a mathematical definition of
the quality relation. Following the constructs de-
veloped in the relational model, we define a
domain as a set of values of similar type. Let ID
be the domain for a system-wide unique identifier
(in Table 4, id101¢ € ID). Let D be a domain for
an attribute (in Table 4, 7 € EE where EE is a
domain for earnings estimate). Let DID be de-
fined on the Cartesian product D X ID (in Table
4, (7, id101¢) € DID).

Let id be a quality key value associated with
an attribute value d where d €D and id €ID. A

quality relation of degree m is defined on the
m + 1 domains (;m > 0; in Table 4, m =3) if it is
a subset of the Cartesian product:

ID x DID, X DID, X ... X DID,,.

Let gt be a quality tuple, which is an element
in a quality relation. Then a quality relation gr is
designated as:

ar={qt|qt = id, did,, did,,....did,,>
where id € ID, did, € DIDj,j=1,...,m}

The integrity constraints for the attribute-based
model are presented next.

4.2. Data integrity

A fundamental property of the attribute-based
model is that an attribute value and its corre-
sponding quality (including all descendant) indi-
cator values are treated as an atomic unit. By
atomic unit we mean that when an attribute value
is created, deleted, retrieved, or modified, its
corresponding quality indicators may also need to
be created, deleted, retrieved, or modified corre-
spondingly. In other words, an attribute value
and its quality indicator values behave atomically.
We refer to this property as the atomicity prop-
erty hereafter. This property is enforced by a set
of quality referential integrity rules defined be-
low.

Insertion: Insertion of a tuple in a quality rela-
tion must ensure that for each non-null quality
key present in the tuple (as specified in the
quality schema definition), the corresponding
quality indicator tuple must be inserted into the
child quality indicator relation. For each non-null
quality key in the inserted quality indicator tuple,
a corresponding quality indicator tuple must be
inserted at the next level. This process must be
continued recursively until no more insertions are
required.

Deletion: Deletion of a tuple in a quality rela-
tion must ensure that for each non-null quality
key present in the tuple, corresponding quality
information must be deleted from the table cor-
responding to the quality key. This process must
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Fig. 11. QI-compatibility example.

be continued recursively until a tuple is encoun-
tered with all null quality keys.

Modification: If an attribute value is modified
in a quality relation, then the descendant quality
indicator values of that attribute must be modi-
fied.

We now introduce a quality indicator algebra
for the attribute-based model.

4.3. Data manipulation

In order to present the algebra formally, we
first define two key concepts that are fundamen-
tal to the quality indicator algebra: QI-compatibil-
ity and QIV-Equal.

4.3.1. QI-compatibility and QIV-equal

Let a, and a, be two application attributes.
Let QI{a,) denote the set of quality indicators
associated with a;. Let S be a set of quality
indicators. If $ © QI(a,) and S © Ql(a,), then q,
and a, are defined to be QI-Compatible with
respect to S. We assume that the numeric sub-

scripts (e.g., gi;,) map the quality indicators to
unique positions (and semantics) in the quality
indicator tree. For example, if S = {qi,, gi,, gi,},
then the attributes @, and a, shown in Figure 11
are QI-Compatible with respect to S. Whereas if
S ={qi,, giy}, then the attributes a4, and a,
shown in Figure 11 are not QI-Compatible with
respect to S.

Let a, and a, be QI-Compatible with respect
to S. Let w;, and w, be values of a, and a,
respectively. Let gi(w,) be the value of quality
indicator gfor the attribute value w, where gi € S
(gi,(w,) = v, in Figure 12). Define w, and w, to
be QIV-Equal with respect to S provided that
Vgi € S gi(w,) = gi(w,), denoted as w, =5w,. In
Figure 12, for example, w, and w, are QIV-Equal
with respect to S = {gi,, gi,,}, but not QIV-Equal
with respect to S = {qi,, gi;;} because gi,(w,) =
vy, whereas gisy(w,) = x5,

In practice, it is tedious to explicitly state all
the quality indicators to be compared (i.e., to
specify all the elements of S). To alleviate the
situation, we introduce i-level QI-compatibility (i-

- (@1%1)

(qi1-V1) (q1 2) (QI

/1 NN

(diypVer) (9 Vep) (@0 Y
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Fig. 12. QIV-equal example.
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Table 7
Table 7.1
Table 7.2

<CN, nil¢> <CEQ, nilg> <EE, EE¢>

<IBM, nil¢> <J Akers, nilg> <6.08, id0101¢>
<DEC, nilg> <K Olsen, nil¢> <-0.32, id0102¢>

<TI, nilg> | <J Junkins, nilg> <2.51, id0103¢>
<EE¢, nilg> <SRC1, SRCl¢> <Reporting_date, nilg>

<id0101¢, nilg>
<id0102¢, nilg>
<id0103¢, nilg>

<Nexis, id0201¢>
<Nexis, id0202¢>
<Lotus, id0203¢>

<10-07-92, mnilg>
<10-07-92, nilg>
<10-07-92, nil¢g>

<SRCl1¢, nilg>

<id0201¢, nilg¢>
<id0202¢, nil¢>
<id0203¢, nilg>

<SRC2, nilg>

<Zacks, nilg>
<First Boston, nil¢>
<First Boston, nilg>

<Reporting_date, nilg>

<1-07-92,
<1-07-92, nilg>
<1-07-92, nilg>

Fig. 13. The quality relation large-and-medium.

level QIV-Equal) as a special case for QI-compa-
tibility (QIV-equal) in which all the quality indi-
cators up to a certain level of depth in a quality

361

QI-Compatible if the following two conditions are
satisfied: (1) a, and a, are QI-Compatible with
respect to S, and (2) S consists of all quality

indicator tree are considered.
Let a, and a, be two application attributes.

Table 8§ <Apple, nilg> <] Sculley, nilg> <5.69, id1101¢>
<DEC, nil¢> <K Olsen, nilg> <-0.32, id1102¢>

<TI, nilg> <J Junkins, nilg> <2.51, id1103¢>
<EE¢, nil> <SRC1, SRCl¢> <Reporting_date, nil¢>

Table 8.1 <id1101¢, nil¢> <Lotus, id1201¢> <10-07-92, nilg>
<id1102¢, nilg> <Nexis, id1202¢> <10-07-92, nilg>

<id1103¢, nil¢> <Lotus, id1203¢> <10-07-92, nilg>
<SRCl1¢, nilg> <SRC2, nilg> <Reporting_date, nilg>

Table 8.2 <id1201¢, nilg¢> <Zacks, nilg> <1-07-92, nilg>
<id1202¢, nilg> <First Boston, nil¢> <1-07-92, nilg>

<id1203¢, nil¢> <Zacks, nil¢g> <1-07-92, nile¢>

Let a, and a, be QI-Compatible with respect to
S. Let w, and w, be values of a, and a, respec-
tively, then w, and w, are defined to be i-level

indicators present within i levels of the quality
indicator tree of a; (thus of a,).

By the same token, i-level QIV-Equal between
w, and w,, denoted by w, =’ w,, can be defined.
If “i” is the maximum level of depth in the

<CN, nilg¢>

<CEO, nil¢>

<EE, EE¢>

Fig. 14. The quality relation small-and-medium.
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quality indicator tree, then a, and a, are defined
to be maximum-level QI-Compatible. Similarly,
maximum-level QIV-Equal between w, and w,,
denoted by w, ="w,, can also be defined.

To exemplify the algebraic operations in the
quality indicator algebra, we introduce two qual-
ity relations having the same quality scheme set
as shown in Figure 9. They are referred to as
Large-and-Medium (Tables 7, 7.1, 7.2 in Figure
13) and Small-and-Medium (Tables 8, 8.1, and 8.2
in Figure 14).

These two quality relations will be used to
illustrate various operations of the quality indica-
tor algebra. In order to illustrate the relationship
between the quality indicator algebraic opera-
tions and the high-level user query, the SELECT,
FROM, WHERE structure of SQL is extended
with an extra clause “with QUALITY.” This
extra clause enables a user to specify the quality
requirements regarding an attributes referred to
in a query.

If the clause “with QUALITY” is absent in a
user query, then it means that the user has no
explicit constraints on the quality of data that is
being retrieved. In that case quality indicator
values would not be compared in the retrieval
process; however, the quality indicator values as-
sociated with the applications data would be re-
trieved as well.

In the extended SQL syntax, the dot notation
is used to identify a quality indicator in the qual-
ity indicator tree. In Figure 9, for example,
EE.SRCI1.SRC2 identifies SRC2 which is a qual-

ity indicator for SRC1, which in turn is a quality
indicator to EE.

The quality indicator algebra is presented in
the following subsection.

4.3.2. Quality indicator algebra

Following the relational algebra [15], we define
the five orthogonal quality relational algebraic
operations, namely selection, projection, union,
difference, and Cartesian product.

In the following operations, let QR and QS be
two quality schemes and let gr and gs be two
quality relations associated with QR and QS re-
spectively. Let @ and b be two attributes in both
QR and QS. Let ¢, and ¢, be two quality tuples.
Let S, be a set of quality indicators specified by
the user for the attribute 4. (That is, S, is con-
structed form the specifications given by the user
in the “with QUALITY” clause.) Let the term
t,.a =t,.a denote that the values of the attribute
a in the tuples ¢, and ¢, are identical. Let £,.a =%¢
t,.a denote that the values of attribute a in the
tuples ¢, and ¢, are QIV-equal with respect to
S,. Similarly, let t,.a =" t,.a and t.a=" t,.a
denote i-level QIV-equal and maximum-level
QIV-equal respectively between the values of ¢,.a
and t,.a.

4.3.2.1. Selection. Selection is a unary operation
which selects only a horizontal subset of a quality
relation (and its corresponding quality indicator
relations) based on the conditions specified in the
Selection operation. There are two types of con-

<CN, nilg> <CEO, nilg> <EE, EE¢>
Table 9 <IBM, nilg> <J Akers, nilg> <6.08, id0101¢>
<EE¢, nilg> <SRCI1, SRClg> <Reporting_date, nilg>
Table 9.1 <id0101¢, nilg> <Nexis, i1d0201¢> <10-07-92, nilg>
<SRC1¢, nilg> <SRC2, nilg> <Reporting_date, nilg>
Table 9.2 <id0201¢, nil¢> <Zacks, nilg> <1-07-92, nilg>

Fig. 15.
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ditions in the Selection operation: regular condi-
tions for an application attribute and quality con-
ditions for the quality indicator relations corre-
sponding to the application attribute. The selec-
tion, o(gr), is defined as follows:

od(aqr) = {tIVt, €qrVae QR,((t-a=t,-a)
A(t-a="t;.a)) AC(t)}

where C(t)) = e Pe,®... Pe,PeiPeid... Pel;
e; is in one of the forms: (¢,.a 6 constant) or (¢,.a
6 t.b); e? is of the forms (gi, = constant) or

(t,.a=%** ¢ .b)or(t;.a="t,.b)or(t,.a="1t.b);

qgi, €Qla); @€ {A, v, "Loe{=<, =, <,
#, <, >,=) and S§,, is the set of quality
indicators to be compared during the comparison
of ¢t,.a and ¢,.b.

Example I: Get all Large-and-Medium compa-
nies whose earnings estimate is over 2 and is
supplied by Zacks Investment Research.

A corresponding extended SQL query is shown
as follows:

SELECT CN, CEO, EE
FROM Large-and-Medium
WHERE EE >2

with QUALITY EE.SRC1.SRC2 =*“Zacks”

This SQL query can be accomplished through
a Seclection operation in the quality indicator
algebra. The result is shown in Figure 15.

Note that in the conventional relational model,
only Table 9 would be produced as a result of this
SQL query. Whereas, in the quality indicator
algebra, Tables 9.1, 9.2 are also produced. Table
9 shows that the earnings estimate for IBM is
6.08; and the quality indicator values in Tables
9.1 and 9.2 show that the data is retrieved from
the Nexis database on October 7, 1992, which, in
turn, is based on data reported by Zacks Invest-
ment Research on January 7, 1992. An experi-
enced user could infer from these quality indica-
tor values that the estimate is credible, given that
Zacks is a reliable source of earnings estimates.

4.3.2.2. Projection. Projection is a unary operation
which selects a vertical subset of a quality rela-
tion based on the set of attributes specified in the
Projection operation. The result includes the pro-
jected quality relation and the corresponding
quality indicator relations that are associated with
the set of attributes specified in the Projection
operation.

Let PJ be the attribute set specified, then the
Projection, IT§; (gr), is defined as follows:

ITg(ar) = {tIVt, e qr,YaePJ,((ta=t, -a)

A(ta="t.a))}

<CN, nil¢> <EE, EE¢>
<IBM, nilg> <6.08, id0101¢>
<DEC, nilg> <-0.32, id0102¢>
<TI, nilg> <2.51, id0103¢>
<EE¢, nilg> <SRC1, SRClg> <Reporting_date, nilg>
<id0101¢, nilg> <Nexis, i1d0201¢> <10-07-92, nil¢>
<id0102¢, nilg> <Nexis, 1d0202¢> <10-07-92, nil¢>
<id0103¢, nilg> <Lotus, id0203¢> <10-07-92, nilg>

<SRCl¢, nilg>
<id0201¢, nilg>
<id0202¢, nilg>
<id0203¢, nilg>

<SRC2, nilg>

<Zacks, nilg>
<First Boston, nilg>
<First Boston, nilg>

<Regor[in§_dale, nilg>
<1-07-92, nile¢>
<1-07-92, nilg¢>
<1-07-92, nilg>

Fig. 16.
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Example 2: Get company names and earnings
estimates of all Large-and-Medium companies

A corresponding SQL query is shown as fol-
lows:
SELECT CN, EE
FROM Large-and-Medium

This SQL query can be accomplished through
a Projection operation. The result is shown in
Figure 16.

4.3.2.3. Union. In Union, the two operand quality
relations must be QI-Compatible. The result in-
cludes (1) tuples from both gr and gs after elimi-
nation of duplicates, and (2) the corresponding
quality indicator relations that are associated with
the resulting tuples.

qrUgs =qr U {t|Vt,€qs,At, €qrVa € QR,

((:.a =t,.a) A (t.a=""t,.a)

A((ta=ty.a) A(t,.a =51,.a)))}

In the above expression, “ (t.a =t,.a A t,.a
=3¢t .a)” is meant to eliminate duplicates. Tu-
ples ¢, and ¢, are considered duplicates provided
that (1) there is a match between their corre-

sponding attribute values (i.e., t;.a = t,.a) and (2)
these values are QIV-equal with respect to the
set of quality indicators (§,) specified by the user
G.e., t;.a =5 t,.a).

Example 3-1: Get company names, CEO
names, and earnings estimates of all Large-and-
Medium and Small-and-Medium companies.

A corresponding extended SQL query is shown
as follows:

SELECT LM.CN, LM.CEO, LM.EE
FROM Large-and-Medium LM
UNION

SELECT SM.CN, SM.CEO, SM.EE

FROM Small-and-Medium SM
with QUALITY (LM.EE.SRC1.SRC2 = SM.
EE.SRC1.SRC2)

This SQL query can be accomplished through
a Union operation. The result is shown in Figure
17.

Note that there are two tuples corresponding
to the company TI in the result because their
quality indicator values are different with respect
to SRC2.

Example 3-2: If the quality requirement were
(LM.EE.SRC1 = SM.EE.SRC1) then these two

I <CN, nilg>

<IBM, nil¢>
<DEC, nilg>
<TI, nilg>

<Apple, nile>

<TI, nil¢>

<CEO, nilg>

<] Akers, nilg>
<K Olsen, nil¢>
<J Junkins, nile>
<J Sculley, nilg>
<J Junkins, nilg>

<EE, EE¢>

<6.08, id0101¢>
<-0.32, id0102¢>
<2.51, id0103¢>
<5.69, idi101¢>
<2.51, id1103¢>

<EE¢, nilg>
<id0101¢, nilg>
<id0102¢, nilg>
<id0103¢, nilg>
<id1101¢, nilg>
<id1103¢, nilg>

<SRC1, SRClg¢>

<Nexis, id0201¢>
<Nexis, id0202¢>
<Lotus, 1d0203¢>
<Lotus, id1201¢>
<Lotus, id1203¢>

<Reporting_date, nilg>

<10-07-92, nil¢>
<10-07-92, nilg>
<10-07-92, nilg>
<10-07-92, nilg>
<10-07-92, nilg>

<SRC1¢, nilg>

<SRC2, nil¢>

<Reporlin§ date, nilg>

<id0201¢, nilg>
<id0202¢, nilg>
<id0203¢, nilg>
<id1201¢, nilg>

<id1203¢, nil¢>

<Zacks, nilg>
<First Boston, nilg>
<First Boston, nilg>

<Zacks, nilg>

<Zacks, nilg>

<1-07-92, nilg>
<1-07-92, nilg>
<1-07-92, nil¢>
<1-07-92, nil¢>
<1-07-92, nil¢>

Fig. 17.
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<CN, nilg>
<IBM, nilg>
<DEC, nilg>
<TI, nilg>
<Apple, nilg>

<CEQ, nilg>
<J Akers, nilg>
<K Olsen, nilg>
<J Junkins, nilg>
<J Sculley, nilg>

<EE, EE¢>

<6.08, id0101¢>
<-0.32, id0102¢>
<2.51, id0103¢>
<5.69, id1101¢>

<EEg¢, nilg>

<SRC1, SRCl1¢>

<Reportins date, nilg>

<id0101¢, nilg>
<id0102¢, nile>
<id0103¢, nilg>
<id1101¢, nil¢>

<Nexis, id0201¢>
<Nexis, i1d0202¢>
<Lotus, id0203¢>
<Lotus, id1201¢>

<10-07-92, nil¢g>
<10-07-92, nilg>
<10-07-92, nilg>
<10-07-92, nilg>

<SRC1¢, nilg>

«id0201¢, nilg>
<id0202¢, nilg>
<id0203¢, nile>
<id1201¢, nilg>

<SRC2, nilg>

<Zacks, nilg>
<First Boston, nilg>
<First Boston, nilg>

<Zacks, nilg>

<Reporting_date, nilg>

<1-07-92, nil¢>
<1-07-92, nilg>
<1-07-92, nil¢>
<1-07-92, nilg>

Fig. 18.

365

tuples would be considered duplicates and only
one tuple for TI is retained in the result. The
result of this query is shown in Figure 18.

Example 3-3. Consider the following extended
SQL query which switches the order of the union
operation in Example 3-2:

Note also that unlike the relational union, the SELECT SM.CN, SM.CEO, SM.EE
quality union operation is not commutative. This FROM Small-and-Medium SM
is illustrated in Example 3-3 below. UNION
<CN, nil¢> <CEO, nil¢> <EE, EE¢>
<IBM, nilg> <J Akers, nilg> <6.08, id0101¢>
<DEC, nilg> <K Olsen, nilg> <-0.32, id0102¢>
<Apple, nilg> <] Sculley, nilg> <5.69, id1101¢>
<TI, nilg> <J Junkins, nilg> <2.51, id1103¢>
<EE¢, nilg> <SRC1, SRClg> <Reportin§_date, nilg>

<id0101¢, nile¢>
<id0102¢, nilg>

<id1101¢, nilg>
<id1103¢, nilg>

<Nexis, id0201¢>
<Nexis, 1d0202¢>
<Lotus, id1201¢>
<Lotus, id1203¢>

<10-07-92, nilg>
<10-07-92, nilg¢>

<10-07-92, nilg>
<10-07-92, nilg>

<SRC1¢, nilg>

<SRC2, nilg>

<Reponins_datc, nilg>

<id0201¢, nile>
<id0202¢, nilg>

<id1201¢, nil¢>
<id1203¢, nilg>

<Zacks, nilg>
<First Boston, nilg>

<Zacks, nilg>

<Zacks, nilg>

<1-07-92, nil¢g>
<1-07-92, nilg>
<1-07-92, nilg>

<1-07-92, nilg>

Fig. 19.
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<CN, nil> <CEQ, nilg> <EE, EE>

<IBM, nilg> <] Akers, nilg> <6.08, id0101¢>

<TI, nilg> <J Junkins, nil¢> <2.51, id0103¢>
<EEg¢, nil> <SRC1, SRClg> <Reportin5_date, nilg>
<id0101¢, nilg> <Nexis, 1d0201¢> <10-07-92, nilg>
<id0103¢, nilg> <Lotus, id0203¢> <10-07-92, nil¢>

l <SRCl¢, nil> <SRC2, nilg> <Reporting_date, nilg>
<id0201¢, nilg> <Zacks, nilg> <1-07-92, nilg>
<id0203¢, nilg> <Zacks, nilg> <1-07-92, nilg¢>

- Fig. 20.

LM.CN, LM.CEO, LM.EE
Large-and-Medium LM

gr which are not equal to tuples in gs. During

with QUALITY (LM.EE.SRC1 = SM.EE.SRC1)

The result is shown in Figure 19.

In the above result the tuple corresponding to
TT is taken from Small-and-Medium companies.
On the other hand, in Example 3-2 it is taken
from the Large-and-Medium companies.

4.3.2.4. Difference. In Difference, the two operand
quality relations must be QI-Compatible. The
result of this operation consists of all tuples from

this equality test the quality of attributes speci-
fied by the user for each attribute value in the

tuples ¢, and ¢, will also be taken into considera-
tion.

qr —9gs = {t|Vt, € qr, 3t, € gs, Va € QR,
((t.a=ty.a) A(t.a="t,.a)
A((ty.a =ty.a) A (t.a =51,.a)))}

Example 4: Get all the companies which are

<CN, nil¢>

<CEQ, nil¢>

<EE, EE¢>

<IBM, nil¢>

<J Akers, nilg>

<6.08, 1d0101¢>

<EEg¢, nilg>

<id0101¢,
nil¢>

<Nexis, 1d0201¢>

<SRC1, SRC1¢>

<Reporting_date,
nil¢>

<10-07-92, nil¢>

<SRC1¢, nilg>

—

<SRC2, nilg>

<Reporting_date,
nil¢>

<id0201¢,

nilg>

<Zacks, nilg>

Fig. 21.

<1-07-92, nil¢>
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classified as only Large-and-Medium companies
but not as Small-and-Medium companies.

A corresponding SQL query is shown as fol-
lows:

SELECT LM.CN, LM.CEO, LM.EE
FROM Large-and-Medium LM
DIFFERENCE

SELECT SM.CN, SM.CEQ, SM.EE
FROM Small-and-Medium SM

with QUALITY (LM.EE.SRC1.SRC2 = SM.
EE.SRC1.SRC2)
This SQL query can be accomplished through
a Difference operation. The result is shown in
Figure 20.

Note here that according to the conventional
relational algebra, the tuple corresponding to the
company TI must not be included in the result.
But in quality indicator algebra the tuple corre-
sponding to the company TI from the relation
Large-and-Medium is included in the result be-
cause the corresponding tuple in the relation
Small-and-Medium has different quality indica-
tors than those of the relation Large-and-
Medium. In the following paragraph, an example
is provided to demonstrate the change in the
contents of results when quality requirements
change.

If the constraint in the QUALITY part of the

<LM.CN, nil¢> | <LM.CEO, nil¢> <LM.EE, EE¢> <SM.CN, nil¢> | <SM.CEO, nilg> <SM.EE, EE¢>
<IBM, nil¢g> <J Akers, nilg> <6.08,id0101¢> | <Apple, nilg> | <J Sculley, nilg> <5.69, id1101¢>
<IBM, nil¢> <J Akers, nilg> <6.08,id0101¢> <DEC, nilg> <K Olsen, nil¢g> | <-0.32, id1102¢>
<IBM, nil¢> <J Akers, nilg> <6.08,id0101¢> <TI, nilg> <J Junkins, nilg> | <2.51, id1103¢>
<DEC, nilg> <K Olsen, nilg> <-0.32,id0102¢>| <Apple, nilg> <J Sculley, nilg> <5.69, id1101¢g>
<DEC, nilg> <K Olsen, nilg> | <-0.32,id0102¢>]| <DEC, nilg> <K Olsen, nilg> | <-0.32, id1102¢>
<DEC, nilg> <K Olsen, nilg> | <-0.32,id0102¢> <T1, nilg> <J Junkins, nil¢> | <2.51, id1103¢>
<TI, nil¢> <J Junkins, nilg> | <2.51,id0103¢> | <Apple, nilg> | <J Sculley, nilg> <5.69, id1101¢>
<TI, nilg> <J Junkins, nilg> | <2.51,id0103¢> <DEC, nilg> <K Olsen, nilg> | <-0.32, id1102¢>
<TI, nilg> <J Junkins, nilg> | <2.51,id0103¢> <TI, nilg> <J Junkins, nilg> | <2.51, id1103¢>
<LM.EE¢, nil¢> <LM.SRC1, SRCl¢> <LM.Reportin§ date,nilg>
<id0101¢, nilg> <Nexis, d0201¢> <10-07-92,nil¢>
<id0102¢, nilg> | <Lotus, id0202¢> <10-07-92 nil¢>
<id0103¢, nilg> | <Nexis, id0203¢> <10-07-92,nil¢>
<LM.SRCl¢, <LM.SRC2, nil¢> <LM.Reporting_date,nil¢g>
nilg>
<id0201¢, nilg> <Zacks,nilg> <1-07-92,nil¢>
<id0202¢, nilg> | <First Boston,nilg> <1-07-92,nilg>
<id0203¢, nilg> <First Boston,nilg> <1-07-92,nilg>

<SM.EEg, nil> <SM.SRC1, SRCl¢> <SM.Reporting_date,

nilg>

<id1101¢, nilg> | <Lotus, id1201¢> <10-07-92, nilg>
<id1102¢, nilg> | <Nexis, id1202¢> <10-07-92, nilg>
<id1103¢, nilg> <Lotus, id1203¢> <10-07-92, nilg>
<SM.SRCl¢, <SM.SRC2, nil¢> <SM.Reporting_date,
nilg> nilg>
<id1201¢, nilg> <Zacks, nilg> <1-07-92, nil¢>
<id1202¢, nilg> | <First Boston, nilg> <1-07-92, nil¢>
<id1203¢, nilg> <Zacks, nilg> <1-07-92, nil¢>

Fig. 22.
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query were (LM.EE.SRC1 = SM.EE.SRC1) then
the result is as shown in Figure 21.

4.3.2.5. Cartesian product. The Cartesian product
is also a binary operation. Let QR be of degree r
and QS be of degree 5. Let ¢, €gr and ¢, €gs.
Let ¢,(i) denote the i™ attribute of the tuple ¢,
and 1,(i) denote the i' attribute of the tuple ¢,.
The tuple ¢ in the quality relation resulting from
the Cartesian product of gr and gs will be of
degree r + 5. The Cartesian product of gr and gs,
denoted as gr X? gs, is defined as follows:
arX9qs ={t|\Vt, € qr V1, € gs,

(1) =M A ((1) ="1(1))
A1) = 11(2)) A (1(2) ="14(2))

AQE(r)=1(r)) A(2(r)="1(r))
A((r+1)=t,(ANA(t(r +1) ="1,(1))
A(E(r +2) = 1(2)) A (t(r +2) ="15(2))

AQt(r+s)=t,(s)A((r +5)="1,(s))}

The result of the Cartesian product between

Large-and-Medium and Small-and-Medium is

shown in Figure 22,

The set of quality indicator tables associated
with each attribute in the table resulting from the
Cartesian product are retrieved as part of the
result.

Other algebraic operators such as Intersection
and Join can be derived from these five orthogo-
nal operators, as in relational algebra.

We have presented the attribute-based model
including a description of the model structure, a
set of integrity constraints for the model, and a
quality indicator algebra. In addition, each of the
algebraic operations are exemplified in the con-
text of the SQL query. The next section discusses
some of the capabilities of this model and future
research directions.

5. Discussion and future directions

The attribute-based model can be applied in
different ways and some of them are listed below:

e The ability of the model to support quality
indicators at multiple levels make it possible to
retain the origin and intermediate data sources.
The example in Figure 9 illustrates this.

e A user can filter the data retrieved from a
database according to quality requirements. In
Example 1, for instance, only the data fur-
nished by Zacks Investment Research is re-
trieved as specified in the clause “with QUAL-
ITY EE.SRC1.SRC2 =“Zacks”.”

e Data authenticity and believability can be im-
proved by data inspection and certification. A
quality indicator value could indicate who in-
spected or certified the data and when it was
inspected. The reputation of the inspector will
enhance the believability of the data.

e The quality indicators associated with data can
help clarify data semantics, which can be used
to resolve semantic incompatibility among data
items received from different sources. This ca-
pability is very useful in an interoperable envi-
ronment where data in different databases have
different semantics.

e Quality indicators associated with an attribute
may facilitate a better interpretation of null
values. For example, if the value retrieved for
the spouse field is empty in an employee record,
it can be interpreted (i.e., tagged) in several
ways, such as (1) the employee is unmarried, (2)
the spouse name is unknown, or (3) this tuple is
inserted into the employee table from the ma-
terialization of a view over a table which does
not have spouse field.

e In a data quality control process, when errors
are detected, the data administrator can iden-
tify the source of error by examining quality
indicators such as data source or collection
method.

In this paper, we have investigated how quality
indicators may be specified, stored, retrieved, and
processed. Specifically, we have (1) established a
step-by-step procedure for data quality require-
ments analysis and specification, (2) presented a
model for the structure, storage, and processing
of quality relations and quality indicator rela-
tions, and (3) touched upon functionalities re-
lated to data quality administration and control.

We are actively pursuing research in the fol-
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Fig. 23. Relationship among quality attributes, quality parameters, and quality indicators.

lowing areas: (1) In order to determine the qual-
ity of derived data (e.g., combining accurate
monthly data with less accurate weekly data), we
are investigating mechanisms to determine the
quality of derived data based on the quality indi-
cator values of its components. (2) In order to use
this model for existing databases, which do not
have tagging capability, they must be extended
with quality schemas instantiated with appropri-
ate quality indicator values. We are exploring the
possibility of making such a transformation cost-
effective. (3) Though we have chosen the rela-
tional model to represent the quality schema, an
object-oriented approach appears natural to
model data and its quality indicators. Because
many of the quality control mechanisms are pro-
cedure oriented and 0-o models can handle pro-
cedures (i.e., methods), we are investigating the
pros and cons of the object-oriented approach.
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7. Appendix: Premises about data quality require-
ments analysis

Below we present premises related to data
quality modeling and data quality requirements
analysis. To facilitate further discussion, we de-

fine a data quality attribute as a collective term
that refers to both quality parameters and quality
indicators as shown in Figure 23 (This term is
referred to as a quality attribute hereafter.)

7.1. Premises related to data quality modeling

Data quality modeling is an extension of tradi-
tional data modeling methodologies. As data
modeling captures many of the structural and
semantic issues underlying data, data quality
modeling captures many of the structural and
semantic issues underlying data quality. The fol-
lowing four premises relate to these data quality
modeling issues.

{(Premise 1.1) (Relatedness between entity and
quality attributes): In some cases a quality at-
tribute can be considered either as an entity
attribute (i.e., an application entity’s attribute) or
as a quality attribute. For example, the name of a
teller who performs a transaction in a banking
application may be an entity attribute if initial
application requirements state that the teller’s
name be included; alternatively, it may be mod-
eled as a quality attribute.

From a modeling perspective, whether an at-
tribute should be modeled as an entity attribute
or a quality attribute is a judgment call on the
part of the design team, and may depend on the
initial application requirements as well as even-
tual uses of the data, such as the inspection of the
data for distribution to external users, or for
integration with other data of different quality.
The relevance of distribution and integration of
the information is that often the users of a given
system “know’ the quality of the data they use.
When the data is exported to their users, how-
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ever, or combined with information of different
quality, that quality may become unknown.

A guideline to this judgment is to ask what
information the attribute provides. If the at-
tribute provides application information such as a
customer name and address, it may be considered
an entity attribute. If, on the other hand, the
information relates more to aspects of the data
manufacturing process, such as when, where, and
by whom the data was manufactured, then this
may be a quality attribute.

In short, the objective of the data quality re-
quirement analysis is not strictly to develop qual-
ity attributes, but also to ensure that important
dimensions of data quality are not overlooked
entirely in requirement analysis.

(Premise 1.2) (Quality attribute non-ortho-
gonality): Different quality attributes need not be
orthogonal to one another. For example, the two
quality parameters credibility and timeliness are
related (i.e., not orthogonal), such as for real time
data.

(Premise 1.3) (Heterogeneity and hierarchy in
the quality of supplied data): Quality of data may
differ across databases, entities, attributes, and
instances. Database example: information in a
university database may be of higher quality than
data in John Doe’s personal database. Entity
example: data about alumni (an entity) may be
less reliable than data about students (an entity).
Attribute example: in the student entity, grades
may be more accurate than are addresses. In-
stance example: data about an international stu-
dent may be less interpretable than that of a
domestic student.

7.2. Premises related to data quality definitions and
standards across users

Because human insight is needed for data
quality modeling and different people may have
different opinions regarding data quality, differ-
ent quality definitions and standards may result.
We call this phenomenon “data quality is in the
eye of the beholder”. The following two premises
entail this phenomenon.

(Premise 2.1) (Users define different quality
attributes): Quality parameters and quality indi-

cators may vary from one user to another. Quality
parameter example: for a manager the quality
parameter for a research report may be inexpen-
sive, whereas for a financial trader, the research
report may need to be credible and timely. Qual-
ity indicator example: the manager may measure
inexpensiveness in terms of the quality indicator
(monetary) cost, whereas the trader may measure
inexpensiveness in terms of opportunity cost of
her own time and thus the quality indicator may
be retrieval time.

{(Premise 2.2) (Users have different quality
standards): Acceptable levels of data quality may
differ from one user to another. For example, an
investor following the movement of a stock may
consider a fifteen minute delay for share price to
be sufficiently timely, whereas a trader who needs
price quotes in real time may not consider fifteen
minutes to be timely enough.

7.3. Premises related to a single user

A single user may have different quality at-
tributes and quality standards for the different
data used. This phenomenon is summarized in
Premise 3 below.

(Premise 3) (For a single user; non-uniform
data quality attributes and standards): A user
may have different quality attributes and quality
standards across databases, entities, attributes, or
instances. Across attributes example: A user may
need higher quality information for the phone
number than for the number of employees. Across
instances example: A user may need high quality
information for certain companies, but not for
others due to the fact that some companies are of
particular interest.
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